University of California, Berkeley Physics 110B, Spring 2004 (*Strovink*)

Exercises 26-30 provide experience relevant to the motion of relativistic charged particles in EM fields.

26.

The field strength and dual field strength tensors

$$\begin{split} F^{\mu\nu} &\equiv \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu} \\ G^{\mu\nu} &\equiv \frac{1}{2}\epsilon^{\mu\nu\rho\sigma}F_{\rho\sigma} \; , \end{split}$$

where $\epsilon^{\mu\nu\rho\sigma} = 1$ (-1) when $\mu\nu\rho\sigma$ are even (odd) permutations of 0123, and 0 otherwise. You may use their explicit elements as given in SCSR Eqs. (62) and (65).

(a.)

By explicit evaluation, show that $F^{\mu\nu}F_{\mu\nu}$ is proportional to $E^2 - c^2B^2$, and find the constant of proportionality. (Because $F^{\mu\nu}F_{\mu\nu}$ is obviously a Lorentz scalar, the Lorentz invariance of $E^2 - c^2B^2$ is therefore said to be manifest.) (b.)

By explicit evaluation, show that $F^{\mu\nu}G_{\mu\nu}$ is proportional to $\vec{E} \cdot \vec{B}$, and find the constant of proportionality. (Likewise the Lorentz invariance of $\vec{E} \cdot \vec{B}$ is manifest.)

(c.)

What two criteria must (uniform nonzero) \vec{E} and \vec{B} satisfy in the lab frame so that, in a different inertial frame, \vec{B} is allowed to vanish?

27.

Griffiths Problem 12.36.

28.

You are an indefagitable runner of rest mass m, whose feet generate a constant force F_0 in the x direction (as observed in the *laboratory*). This force causes your (relativistic) momentum to increase linearly with laboratory time t.

(a.)

At t=0, when you are at rest at the origin, your feet begin to exert this force. Thereafter, show that $\sinh \eta$, where η is your rapidity, is proportional to t, and find the constant of proportionality.

(b.)

At $t = t_1$, a laser pulse is shot from the origin in

the x direction. How much of a head start t_1 do you require in order for the laser pulse never to catch up with you?

29.

At t = 0, a particle of rest mass m and charge e is at rest at the origin. It accelerates under the influence of a uniform static electric field $\vec{E} = \hat{z}E_0$.

(a.)

For t > 0, show that the relativistic solution for z(t) is given by

$$z(t) = \int_0^t c\beta_z(t) dt$$
$$\beta_z(t) = \tanh \eta(t)$$
$$\eta(t) = \sinh^{-1} \frac{eE_0}{mc} t.$$

(b.)

Suppose instead that, at t = 0, the particle has an initial momentum $\vec{p}(0) = \hat{x}p_{\perp}$. Show that the solution for z(t) is the same as in (a.), except that m is replaced by m_{eff} , where

$$m_{\rm eff} = \sqrt{m^2 + p_\perp^2/c^2} \; .$$

This says that, under the influence of a uniform electrostatic field, the longitudinal motion of a particle with nonzero transverse momentum is the same as that of a heavier particle with zero transverse momentum.

(c.)

Under the conditions of part (b.), for t > 0 does x(t) increase linearly with t? Explain.

30.

At t=0, a particle of rest mass m and charge e is at the origin, with initial momentum $\vec{p}(0) = \hat{x}p_{\perp}$. It accelerates under the influence of a uniform static magnetic field $\vec{B} = \hat{z}B_0$.

(a.)

For t > 0, show that the relativistic solution for x(t) and y(t) is given by

$$x(t) = \int_0^t c\beta_x(t) dt$$

$$y(t) = \int_0^t c\beta_y(t) dt$$

$$\gamma_\perp m c\beta_x(t) = p_\perp \cos \omega_c t$$

$$\gamma_\perp m c\beta_y(t) = p_\perp \sin \omega_c t$$

$$\omega_c = -\frac{eB_0}{\gamma_\perp m}$$

$$\gamma_\perp m = \sqrt{m^2 + p_\perp^2/c^2} .$$

(b.)

Suppose instead that, at t = 0, the particle has an initial momentum $\vec{p}(0) = \hat{x}p_{\perp} + \hat{z}p_{\parallel}$. Show that the solution for x(t) and y(t) is the same as in (a.), except that γ_{\perp} is replaced by γ , where

$$\gamma m = \sqrt{m^2 + p_\perp^2/c^2 + p_\parallel^2/c^2} \; . \label{eq:gammam}$$

(c.)

Show that the result of (b.) alternatively can be expressed as the result of (a.) with m replaced by

$$m_{\rm eff} = \sqrt{m^2 + p_{\parallel}^2/c^2} \ .$$

This says that, under the influence of a uniform magnetostatic field, the transverse motion of a particle with nonzero longitudinal momentum is the same as that of a heavier particle with zero longitudinal momentum.

(d.)

Under the conditions of part (b.), for t > 0 does z(t) increase linearly with t? Explain.